Der Schutzschild bröckelt

Verlust des antarktischen Schelfeises beschleunigt Anstieg des Meeresspiegels

In den letzten 20 Jahren sind viele Schelfeise der Antarktis kleiner geworden oder ganz verschwunden. Dadurch hat sich die Fließgeschwindigkeit zahlreicher antarktischer Gletscher vervielfacht, was zum Anstieg des Meeresspiegels beiträgt. Dr. Johannes Fürst vom Institut für Geographie an der FAU konnte mit einem komplexen Rechenmodell erstmals zeigen, wann genau das Schelfeis seine wichtige Stützfunktion verliert. Zusammen mit französischen Antarktis-Experten des Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) in Grenoble hat Fürst die Ergebnisse seiner Forschung in der Zeitschrift Nature Climate Change* veröffentlicht.

Blick auf das George-VI Ice Shelf, Westliche Antarktische Halbinsel. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun
Blick auf das George-VI Ice Shelf, Westliche Antarktische Halbinsel. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun

Die Antarktis ist von riesigen Schelfeisflächen umgeben. Die größte, das Ross-Schelfeis, hat etwa die Fläche Spaniens. Diese Schelfeise sind mehrere Hundert Meter dick, schwimmen auf dem Meer und ragen haushoch aus dem Wasser. Dabei sind sie fest verbunden mit den Gletschern und Eisströmen auf dem antarktischen Festland. Normalerweise fließt das Eis dieser Gletscher mit gleichmäßiger Geschwindigkeit bergab und schiebt das Schelfeis vor sich her. An den Rändern der Schelfeise brechen immer wieder große Stücke ab und treiben als Eisberge aufs Meer hinaus. Dieser Eismassenverlust wird durch das Nachfließen der Landeismasse zumeist wieder ausgeglichen. So war es jedenfalls Tausende von Jahren lang.

Schelfeisrückgang seit 1995

In den letzten 20 Jahren beobachten Wissenschaftler jedoch einen fortschreitenden Zerfall der Schelfeise auf der antarktischen Halbinsel. 1995 kam es zum vollständigen Verlust des Larsen-A-Schelfeises mit einer Fläche von der Größe Berlins. Sieben Jahre später zerbrach das um ein Vielfaches größere Larsen-B-Schelfeis. Dieser Zerfall hatte zwar kaum direkte Auswirkungen auf die Höhe des Meeresspiegels, da Schelfeis zum größten Teil bereits im Wasser schwimmt. Allerdings flossen die angrenzenden Gletscher nach dem Zusammenbruch von Larsen A und B bis zu achtmal so schnell ins Meer. „Im Gegensatz zur Situation auf Grönland nimmt das Festlandeis in der Westantarktis nicht deshalb ab, weil es schmilzt. Dafür ist es viel zu kalt“, erklärt Johannes Fürst. „Es nimmt ab, weil dort die Gletscher schneller ins Meer fließen als noch vor 20 Jahren. Wir bezeichnen das als dynamischen Verlust.“

^Blick auf das George-IV Ice Shelf, welches zwischen Alexander Island (Vordergrund) und der westl. Antarktischen Halbinsel (Hintergrund) eingespannt ist. Der markante Spaltenbogen markiert die Aufsetzlinie, den Übergang zwischen Zuflussgletscher und schwimmendem Schelfeis. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun
Blick auf das George-IV Ice Shelf, welches zwischen Alexander Island (Vordergrund) und der westl. Antarktischen Halbinsel (Hintergrund) eingespannt ist. Der markante Spaltenbogen markiert die Aufsetzlinie, den Übergang zwischen Zuflussgletscher und schwimmendem Schelfeis. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun

Langfristiger Anstieg des Meeresspiegels

Würden die Schelfeise rund um die Antarktis zusammenbrechen, dann würde das zu einem rasanten dynamischen Verlust der Landeismasse und damit zu einem langfristig erhöhten Beitrag der Antarktis zum Anstieg des Meeresspiegels führen. Johannes Fürst hat sich deshalb in den letzten Jahren – zunächst noch am LGGE in Grenoble gemeinsam mit den dortigen Glaziologen – mit der Frage beschäftigt, wie die Größe der Schelfeise die Dynamik der dahinterliegenden Gletscher beeinflusst: „Da die Schelfeise durch das Kalben permanent riesige Eismengen verlieren, ist es entscheidend zu wissen, wie weit ein Rückgang der Eiskanten fortschreiten darf, ehe sie ihre Stützfunktion verlieren.“

Westantarktis besonders gefährdet

Das in Frankreich (LGGE) und Finnland (CSC) entwickelte Eisfluss-Modell Elmer/Ice wurde mit einer Fülle von Messdaten zur Eisdicke und zur Fließgeschwindigkeit der Gletscher und Schelfeise der Antarktis gespeist, letztere unter Einbeziehung von ESA-Satellitenbildern. Damit konnte Fürst errechnen, dass nur etwa 13 Prozent der gesamten Schelfeisoberfläche aus passivem Eis bestehen: „Unter passivem Eis verstehen wir den Anteil der schwimmenden Eismasse, der keine zusätzliche Stützfunktion hat. Er könnte also durch Kalben wegbrechen, ohne dass sich die Fließgeschwindigkeit der Gletscher umgehend erhöht.“

Blick auf das George-VI Ice Shelf, Westliche Antarktische Halbinsel. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun
Blick auf das George-VI Ice Shelf, Westliche Antarktische Halbinsel. Aufgenommen während eines NASA IceBridge Messfluges am 16. November 2011. Photo: Matthias Braun

Auffällig sind vor allem die großen regionalen Unterschiede: Entlang der Küste von Königin-Maud-Land, wo sich auch die deutsche Neumayer-Station befindet, haben die Schelfeise einen relativ großen Anteil an passivem Schelfeis. Sie sind also noch sehr stabil. In der Bellingshausen- und Amundsen-See ist der Anteil des passiven Eises jedoch viel geringer und fehlt an manchen Stellen fast vollständig. Johannes Fürst: „Wir erwarten, dass dort ein weiterer Schelfeisrückgang unmittelbare Konsequenzen hat und zu einem verstärkten Eisausfluss vom Festland führt. Das ist deshalb sehr besorgniserregend, weil wir in dieser Region bereits seit zwei Jahrzehnten eine auffällig schnelle Dickenabnahme der Schelfeise und einen dynamischen Eisverlust im Landesinneren beobachten.“

*Nature Climate Change: The safety band of Antarctic ice shelves, Johannes Jakob Fürst, Gaël Durand, Fabien Gillet-Chaulet, Laure Tavard, Melanie Rankl, Matthias Braun and Olivier Gagliardini. DOI: http://dx.doi.org/10.1038/NCLIMATE2912

Weitere Informationen:

Dr. Johannes Fürst
Tel.: 09131/85-22680
johannes.fuerst@fau.de